

Amanda Wheeler, MS; Natalia Czado, MS; David Gangitano, PhD;
Sheree Hughes-Stamm, PhD

68th Annual AAFS, Las Vegas, 2016

SH

Disclosure

- There have not been any endorsement or financial relationship/interest from the following companies
 - Dodge Company: Introfiant & Chromatech Tan
 - Pierce Companies: Care 18
 - QIAGEN: Buffer ATL, Proteinase K, DTT, QIAamp® FFPE Tissue Kit
 - ThermoFisher: Quantifiler Trio® DNA Quantifiler Kit,
 Globalfiler® PCR Amplification Kit
- There have been no real or apparent conflicts of interest

WARNING

There is some content in this presentation that some people may find disturbing

Introduction

- When Formalin-Fixed or Formalin-Fixed Paraffin
 Embedded (FFPE) tissues are the only source of genetic
 material
 - Alternative sources of identification or diagnosis in unexplained deaths
 - Pathology and anatomical samples
 - Identification of exhumed embalmed bodies or human remains

Introduction

- Bones and teeth
 - Traditional sample of choice for DNA analysis with embalmed and skeletal remains
 - Soft tissue presumed too highly damaged and degraded
 - More difficult to collect, and labor intensive to process
 - Specialized, time consuming & costly extraction procedures
 - PCR inhibitors (calcium, collagen)

Soft tissue is easier to collect and process, but will STR typing for identification be successful?

Embalming Background

Formalin fixation

- Preservation of biological tissue sections and/or whole bodies for medical use or burial
 - Formalin: solution of formaldehyde
 (ranges from 5 35%) in water

Also in the femoral artery

Embalming and DNA

- Fixation leads to protein formaldehyde interactions
 - Carbonyl groups link with amine groups forming methylene bridges fixing the tissue

$$R-NH_2 + C \rightarrow R-N^{-}_{H_2}C \rightarrow H_2$$

Higher concentration formalin

More methylene bridges formed Nucleic acid fragmentation (200 – 300 bp)

Problems with Embalming & DNA

- DNA fragmentation makes it difficult to amplify high molecular weight DNA
 - Locus and allele drop out (partial profiles)
- PCR inhibitors (formaldehyde) may hinder DNA amplification
 - Direct interaction with DNA or interfering with DNA polymerase

Overall, formalin fixation decreases DNA quality and quantity

Embalming Fluid Distribution

Exposure depends on the distribution of the chemicals

 Density of capillaries in a tissue determines its exposure to the solution

- Areas with high vascularity: muscle, internal organ & epidermis
- Areas with low vascularity: bone, cartilage, hair & nails

More vascularized the tissue

Higher exposure to formalin

More DNA degradation

Decreased STR success

Embalming Fluid Distribution

- Livor Mortis: pooling of blood by gravity once the heart stops pumping
 - Tissues that are compressed will not show blood pooling (white)
 - Non-compressed tissues will (reddish)

Compressed areas

Less exposure to formalin

Less DNA degradation

Higher STR success rates

Material & Methods - Cadavers

- Three male embalmed cadavers
 - Arterial injection of embalming fluid

Cadaver	Company	Embalming Fluid	Fixative	Amount
1	Dodge	Introfiant	20-50 % Formaldehyde	946mL
2	Dodge	Chromatech Tan	10-25 % Formaldehyde	473mL
3	Pierce	Care 18	15-25% % Formaldehyde	1400mL

• Tissue samples (N = 122)

Skin, Fat & Muscle

Also collected:

- Psoas Major
- Head Hair
- Facial Hair
- Pubic Hair

Internal Organs

Bones & Teeth

- Brain (Gray Matter)
- Eye (Sclera)
- Left Lung
- Heart
- Jejunum
- Liver
- Kidney
- Stomach
- Spleen
- Patellar Tendon
- Calcaneal Tendon

- Humerus
- Femur
- 3rd Distal Hand
 Phalanx
- 3rd Distal Foot
 Phalanx
- Canine
- Incisor
- Bone Marrow

Hard Tissue Preparation

Bone: cleaned, dried, sanded & cut

Teeth & bone pieces: washed, dried & pulverized

4

Soft Tissue Preparation

Samples Collected

Samples cut into (20mg)

Heart

Extraction

Hair & Nails

Samples digested with 300 uL Buffer ATL, 20 uL proteinase K & 20 uL 1M DTT overnight

Bone & Teeth Samples

(~100mg powder) digested with 360 uL Buffer ATL & 20 uL proteinase K overnight

QIAamp[®]
FFPE
Tissue Kit

Soft tissue

samples did not have an extra digestion step

DNA Quantification

- Quantifiler® Trio DNA
 Quantification Kit
 - 7500 Real-Time Thermal Cycler
- Total Human and Male DNA quantity
- IPC (inhibition)
- DNA Degradation (Degradation Index)
 - Ratio of the small amplicon quantity (80bp) to large amplicon quantity (214bp)
 - The larger the DI value, the more degraded the sample is

- GlobalFiler® PCR Amplification Kit
 - GeneAmp® PCR System 9700

- PCR products detected via ABI Prism
 3500 Genetic Analyzer
 - 36cm capillary and POP-4 Polymer
 - GeneMapper ID-X

Results & Discussion – DNA Concentration

Variation between the three cadavers

	Cadaver 1		Cadaver 2			Cadaver 3			
Average [DNA] (ng/μL)	25.9		5.7		28.1				
DNA Concentration	Proportion of Samples (%)								
(ng/μL)									
> 20		35			5			34	
10 – 20	18			18			13		
2-10		17		18		20			
0.02 – 2		28			44		27		
0.002 - 0.02		0		9			4		
Below 0.002	2		6			2			

Difference in yield between cadavers was highly significant (F $_{2,90}$ = 4.99, p < 0.01).

DNA Concentration

- Overall, bone marrow resulted in the highest yields of all samples
- Skin, organ and muscle similar
- Other (cartilage, clippings, hair, teeth & tendon) and bone were similar
- Nails, skin, stomach, hair and teeth consistently yielded the lowest amounts of DNA.

Results & Discussion — DNA Degradation

- 9 out of 122 samples were too degraded to determine a DI value (the large amplicon could not be amplified)
- Levels of DI were consistent across the three cadavers

Degradation Index

DI values were not found to differ significantly between the cadavers (F $_{2.96}$ = 0.69, p = 0.5).

DNA Degradation

- Variation was seen across the various tissue types
- Organs were the most damaged; bone and bone marrow the least
- Consistent with the hypothesis that highly perfused tissues are more highly damaged

The DI values were found to differ significantly based on tissue type (F $_{4,94}$ = 3.25, p < 0.05).

DNA Degradation

Results & Discussion – STR Analysis

- STR success was found to be dependent on the donor (F_{2,87} = 5.81, p < 0.01).
- Bone marrow and muscle tissue types generated on average the most complete STR profiles
- Internal organs consistently yielded the least complete
- 9 samples consistently produced full profiles
 - Muscle Flexor Digitorum brevis,
 Gastrocnemius, Rectus Femoris &
 Thenar
 - Fingernails, calcaneal & patella tendon

Organ Samples

Muscle Samples

DI vs STR Success

 Data suggest that DI values are not predictive of STR success with FD samples

 Samples with low DI values and partial/no profiles and samples with extremely high DI values with partial/full profiles

SH A

Allele Drop Out vs Amplicon Size

Allele Drop Out vs Amplicon Size

Results and Discussion — Livor Mortis

- Skin, fat & muscle sampled from two areas:
 - Trapezius livor mortis, blood pooling (reddish)
 - Gluteus Maximus compressed (white)

 Data suggest that areas under compression may have less damaged DNA than areas with blood pooling

Livor Mortis Cont.

Conclusions

 Guidance may be provided to the forensic community on which tissues from embalmed human remains will most likely generate more complete STR profiles.

- While bone samples did result in both partial to full profiles, skin and muscle samples resulted in higher average success rates.
 - These samples are also much easier to obtain and extract DNA from than bone and teeth.

STR Success

Acknowledgements

- Sam Houston State University Graduate Students
 - Natalia Czado, Samantha Tippen
- Southeast Texas Applied Forensic Science Facility (STAFS)
- Special thanks to the families of the ones that were donated
- Meredith Turnbough for her valuable advice
- Sheri Olsen (Life Technologies) for kindly providing the QuantiFiler®
 Trio DNA Quantification kit used in this study

References

- 1. Farrugia A, Keyser C, Ludes B (2010) Efficiency evaluation of a DNA extraction and purification protocol on archival formalin-fixed and paraffin-embedded tissue. Forensic Sci Int 194: 25-8.
- 2. Mundorff A, Davoren J (2014) Examination of DNA Yield Rates for Different Skeletal Elements at Increasing Post Mortem Invtervals. Forensic Sci Int Genet 8:55-63.
- 3. Vernarecci S, et al (2015) Quantifiler Trio Kit and Forensic Samples Management: A Matter of Degradation. Forensic Sci Int Genet 16:77-85.

For more information please see *Comparison of DNA Yield and STR Success Rates from Different Tissues in Embalmed Bodies* [submitted for review in the Journal of Legal Medicine]

